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Abstract A grid-based Hydrology Laboratory Research Modelling System 
(HL-RMS) that combines lumped conceptual and distributed model features 
has been developed by the US National Weather Service (NWS). HL-RMS 
consists of a well-tested conceptual water balance model applied on a regular 
spatial grid and physically-based kinematic routing models. A parameter 
estimation procedure that combines spatially-distributed and “integrated” at 
basin outlets properties is discussed. Initial tests using high-resolution radar 
precipitation estimates show that HL-RMS yields results comparable to well-
calibrated lumped model simulations and outperforms a lumped model over 
basins where rainfall variability effects are significant. Combining outlet in-
formation and spatially-variable basin properties provides a reliable procedure 
to estimate distributed model parameters. While uniform adjustment of water 
balance model parameters provides reasonable results at basin outlets, the 
problem of removing scale effects in nested basins is still a challenge. 
Key words  distributed model; kinematic routing; radar rainfall estimates; scaling effects; 
spatially-variable parameters; water balance 

 
 
INTRODUCTION 
 
The growing availability of radar precipitation estimates and other sets of spatial data 
have intensified research in distributed modelling. Numerous distributed models and 
modelling approaches have been developed to address a wide variety of issues. Models 
ranging in complexity from the so-called “physically-based fully distributed” to “semi-
distributed” or conceptual lumped models applied at smaller scales have been 
constructed. The range of issues that must be addressed in distributed modelling can be 
found in the most recent special issue of Hydrological Processes (Beven & Feyen, 
2002), a collection of more than 20 papers. As Beven stated in the preface to the issue, 
“if the reader perceives that this issue reveal the problems to be addressed in the 
application of distributed models more than providing solutions, then that properly 
reflects the current state of the art”. The main problem is how to apply point process 
laws to the basin scale given the tremendous vertical and horizontal heterogeneities of 
basin properties. Beven (1995) argues that the aggregation approach towards large-
scale hydrological modelling is an inadequate approach to the scale problem. As a 
result, parameter estimation procedures for physically-based models are not well 
defined, and the physically-based model may be essentially reverting to a type of 
elegant black box (Loague, 1990). Vieux & Moreda (2002) suggested a manual 
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“ordered physics-based parameter adjustment” procedure assuming that there are 
reasonable a priori estimates of a limited number of spatially-variable model 
parameters.  
 In light of these modelling trends, concerns, and the specific needs of the US 
National Weather Service (NWS), the use of simpler approaches was investigated. 
This study echoes the sentiment of Robinson & Sivapalan (1995) who stated that there 
are not enough analyses in finding connections between physically-based and 
conceptual models, “although this is precisely what is required for the advancement of 
hydrological modelling for predictive purposes”. We believe that more comprehensive 
analysis of conceptual lumped and physically-based distributed models on large basins 
is needed to fully benefit from existing lumped modelling experience. In this paper we 
present a preliminary attempt to combine lumped conceptual and distributed model 
features in the development and parameterization of the Hydrology Laboratory 
Research Modelling System (HL-RMS).  
 
 
HL-RMS STRUCTURE 
 
HL-RMS is a flexible modelling system, able to use grid cells or sub-basins as the 
computational elements for rainfall–runoff modelling. Currently, HL-RMS is defined on 
a regular rectangular grid. Each grid cell consists of a water balance component and a 
hillslope and channel routing component. A number of conceptual hillslopes at each grid 
cell are defined to make overland flow distances physically realistic for the relatively 
large cell size (16 km2). A drainage density parameter is used to subdivide a cell into 
equally sized overland flow planes. Conceptual hillslopes drain water to a conceptual 
channel within the same grid cell. A conceptual channel usually represents the highest 
order stream of a selected grid cell. It is assumed that all hillslopes have the same 
properties inside each grid cell but they may be different from cell to cell. Cell-to-cell 
channel routing is done using a flow direction grid. An automatic procedure was 
developed to generate a coarser resolution flow direction grid from higher resolution 
DEM data. To facilitate efficient routing calculations, the drainage network is translated 
into a computational sequence of grid cells in an upstream to downstream order. 
 Fast response runoff from the water balance model is routed over conceptual 
hillslopes within each cell to a conceptual channel. Slow response runoff is assumed to 
enter the channel system directly from the soil and therefore bypass the hillslope 
routing. There is no physical connection between soil moisture states in adjacent grid 
cells. The conceptual channel is the only source of water exchange between 
neighboring pixels.   
 The water balance component of the current version of HL-RMS uses the 
Sacramento Soil Moisture Accounting Model (SAC-SMA) (Burnash, 1995), and 
hillslope-channel routing employs the kinematic wave model. Several factors played a 
role in this selection. Use of the SAC-SMA is a practical choice because NWS 
hydrologists have great experience with lumped applications of the model. Also, the 
work of Koren et al. (2000) established relationships between SAC-SMA parameters 
and soil properties, making it possible to run simulations using parameter estimates 
that vary within a basin. The kinematic wave model is well tested, and it provides 
reasonable accuracy under a wide range of flow conditions. 
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 The SAC-SMA represents conceptually heterogeneous runoff processes over a 
range of spatial scales from tens to a few thousand square kilometres. There are strong 
physical arguments and application results to support the model structure. The basic 
design of SAC-SMA centres on a two layer structure: a relatively thin upper layer, and 
usually a much thicker lower layer which supplies moisture to meet the evapo-
transpiration demands. Each layer consists of tension and free water storages that 
interact to generate soil moisture states and six runoff components. Partitioning of 
rainfall into surface runoff and infiltration is governed by the upper layer soil moisture 
deficit and a percolation rate to the lower layer. 
 A fairly general numerical scheme (Smith, 1980) is used to integrate kinematic 
wave equations. It employs weighting factors α and β in the spatial and temporal 
dimensions, respectively. The scheme stability ranges from unconditionally stable 
(α = 0 and β = 1) to unconditionally unstable (α > β). The best approximation is 
obtained at α = β = 0.5, when the scheme has second order accuracy. However, it is 
practically impossible to satisfy the scheme stability criteria (the Courant number 
Cr = 1) at this value of weighting factors under variable channel properties. Because 
HL-RMS is applied over a wide range of hillslope-channel hydraulic conditions, 
values of 0 and 1 are used for temporal and spatial weight factors, respectively, to 
provide the unconditional stability. While this will lead to some reduction of 
simulation accuracy, our tests suggest that accuracy degradation is less significant than 
input data and model/parameter uncertainties for basins studied. It is also important 
that truncation errors of the scheme increase independently of the space–time 
increments ratio as α and β depart from the value of 0.5 that allows a flexible selection 
of space–time increments to compensate some accuracy reduction.  
 
 
HL-RMS PARAMETERIZATION 
 
Water balance and routing model parameters are assumed to be constant within each 
grid cell; however, they can vary from cell to cell. The approach adopted here is a two-
step procedure: derivation of a priori parameter grids, and adjustment of these grids 
using observed outlet hydrographs. The basic idea used to derive parameter grids is to 
combine distributed grid cell data (e.g. slope, soil properties) with integrated basin 
properties observed at the outlet (e.g. flow measurement information, discharge time 
series). While this approach was applied in the first step of the routing parameter 
estimation procedure, it was used only in the second step of water balance model 
parameterization. 
 To account for the spatial variability within a basin, a priori SAC-SMA parameter 
grids developed by Koren et al. (2000) were used. High-resolution soil data (texture, 
hydrological group, and depth) for the conterminous US were applied. Results from 
lumped simulations using basin averaged a priori parameters (Koren et al., 2000, 
2002) suggest that while a priori estimates cannot outperform results from well 
calibrated parameters on gauged basins, these values provide reasonable initial 
estimates for ungauged basins. To improve the initial estimates, HL-RMS scales a 
priori grids over selected basin by the ratio of the SAC-SMA parameter from lumped 
calibration to the average parameter value from the a priori grid (Koren et al., 2002). 
Because lumped-calibrated SAC-SMA parameters are scale-dependent (Koren et al., 
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1999), some further fine tuning of selected scaled parameters might be required in 
distributed simulations. Fortunately, the scale effect is reduced significantly if a ratio 
of calibration and distributed simulation scales decreases. Koren et al. (1999) observed 
about a 3% runoff difference when calibrated SAC-SMA parameters over 1000 km2 
basin were applied at a grid scale of 16 km2. 
 The kinematic wave relationship between discharge and channel cross-section was 
approximated by a power function defined by two parameters, specific discharge, Qs, 
and exponent value, m. Two options have been developed to define these parameters: 
(a) use of the Chezy–Manning approximation assuming a prismatic channel, referred 
as a channel parameterization method, and (b) direct estimation of these parameters 
from an empirical discharge and cross-section relationship, referred to as a rating curve 
method. The basic idea for both options is to disaggregate information from outlet 
measurements representing basin-integrated properties into interior grid cell para-
meters using local geomorphologic properties. Channel shape parameters (channel 
parameterization option) or specific discharge and exponent (rating curve option) are 
first estimated at the basin outlet by fitting a curve to a plot of cross-section vs top 
width data, or to a plot of cross-section vs discharge data, respectively.  
 Two geomorphic assumptions that follow from channel geometry laws are used to 
estimate channel shape parameters at upstream cells: (a) the ratio of channel-forming 
flows at different cells, rQ,i, equals the ratio of drainage areas, F, and (b) the ratio of 
cross-sectional areas of different channels, rA,i, is a known function of stream orders. 
These assumptions lead to simple estimation procedures. In the channel 
parameterization method, when a two-parametric power approximation of channel 
cross-section was used, distributed channel top width parameter, ai, can be estimated 
from: 
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where Si and ni are channel slope and roughness, Qo and Ao are discharge and cross-
section at the outlet, and b is a shape parameter assumed to be constant within a basin, 
equaling an estimated value at the outlet. With known channel geometry at each cell, 
values of channel specific discharge, Qs, and exponent parameter m are estimated 
from: 
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In the rating curve method, specific discharge at each grid cell is estimated from: 

m
iA

o

i
osis r

F
FQQ ,,, =  (3) 

As in the channel parameterization method, the exponent parameter m is a constant 
that is equal to an estimated outlet value. An advantage of this method is that it does 
not require estimation of channel slope and roughness at upstream points. However, 
because of this, the method may poorly represent channel geometry if there are distinct 



The development and parameterization of a distributed system 
 
 

 

105

portions of basin, which have significant differences in average channel slopes (e.g. 
transition from mountain region to a plain). Note that values of the specific discharge 
and exponent parameters from these two options may differ because of empirical curve 
fitting to different experimental data. It can be shown that the specific discharge ratios 
are equal if the exponent parameters of these options are equal. Comparison of specific 
discharge estimates from these two methods for a few tested headwater basins shows a 
linear relationship indicating a good agreement between the exponent parameter 
values. 
 
 
RESULTS AND DISCUSSION 
 
The tests described here have been performed on watersheds within the Arkansas–Red 
River basin in Oklahoma. The main reason is that this region has the longest archive of 
4-km NEXRAD Stage III precipitation grids (NWS archive) derived from radar-gauge 
analyses (Seo & Breidenbach, 2002), and these rainfall estimates have been evaluated 
more thoroughly than those produced in other parts of the country. In addition, these 
basins have few complications such as snow, reservoirs, and complex topography such 
as mountainous areas.  
 A priori SAC-SMA parameter grids at the 4 km scale were generated over the 
entire region. These grids display a large variability of basin properties that affect 
runoff generation processes over this region. Initial routing parameter grids were 
derived using measured discharge data from only a few stations on the main stem of 
the Arkansas River. A parameter estimation procedure to derive values for upstream 
grid cells is applied sequentially from downstream to upstream gauges independently. 
At each estimation loop, grid cell parameters above a selected gauge, estimated 
previously from the next downstream gauge, are overwritten by new estimates from 
the selected upstream gauge. For analysis, these grids were then refined over a few 
selected headwater basins.  
 Two critical questions to consider in evaluating the potential benefits of distributed 
modelling are: (a) whether a distributed model can produce simulations that are com-
parable to or better than simulations from existing lumped models, and (b) whether it 
is possible to define a distributed parameter model calibration strategy that is robust 
across spatial scales. We consider the ability to produce simulations that are 
comparable to lumped results a positive result because there are other potential 
benefits from running a distributed model: the ability to simulate flows at small, 
ungauged outlets within a watershed, and the ability to incorporate future sources of 
spatial data are good examples. 
 Continuous discharge simulations at an hourly time step were generated for the  
8-year period. HL-RMS results are evaluated against both hourly observed hydro-
graphs and simulated hydrographs from a lumped version of the SAC-SMA model 
paired with a unit hydrograph routing procedure. First, “reference” results were 
generated using a priori estimates of water balance and routing parameters for both 
HL-RMS and a lumped application of SAC-SMA. Second, SAC-SMA parameters 
were calibrated in a lumped mode for all parent basins. A priori SAC-SMA parameter 
grids of HL-RMS were then adjusted as discussed above, using lumped calibration 
results for defined watersheds. Major adjustments to gridded parameter values were  
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Table 1 Accuracy statistics for selected headwater basins in the Arkansas–Red basins. 

HL-RMS simulations Lumped simulations 
Watershed 

Area 
(km2) ∗vol. ∗peak. ∗RMS R ∗vol. ∗peak. ∗RMS R 

Calibrated parameters: 
Blue 1232.8 25.0 25.0 139.0 0.87 23.0 35.0 141.0 0.86 
Eldon   795.1 16.4 25.7 131.0 0.90 18.5 26.0 114.5 0.92 
Tahlequah 2483.8 11.3 20.5   70.8 0.92 12.6 25.8   64.9 0.94 
Watts 1644.6 11.9 26.4   86.5 0.92 12.9 30.2   82.8 0.93 
Savoy*   432.8 19.9 52.2 185.6 0.86 20.9 52.0 196.7 0.85 
Kansas*   284.9 23.8 53.0 161.7 0.81 23.7 55.8 189.6 0.73 
Uncalibrated parameters: 
Blue 1232.8 38.0 40.3 187.0 0.81 31.0 42.8 163.0 0.83 
Eldon   795.1 27.4 45.3 160.0 0.84 30.2 53.4 181.9 0.79 
Tahlequah 2483.8 13.4 19.2   84.5 0.90 23.7 25.6   97.2 0.86 
Watts 1644.6 13.8 26.0 105.8 0.89 23.1 30.5 109.9 0.87 
Savoy   432.8 22.4 49.8 194.2 0.85 29.1 54.5 228.6 0.79 
Kansas   284.9 24.2 52.2 185.1 0.75 26.9 57.1 221.1 0.62 
Notes:  
(a) Watersheds marked by * are nested basins (Savoy and Kansas are sub-basins of Tahlequah, Illinois 
River). These sub-basins actually were not calibrated; instead parent basin calibrated parameters were 
used in simulations.  
(b) Values in bold italic mean that this statistic is better for distributed (lumped) simulations compared 
to lumped (distributed). 
 
 
achieved by direct scaling from lumped calibrated parameters. Further minor 
adjustments of a few upper zone parameter scale factors were made using a manual 
trial-and-error process similar to an approach suggested by Vieux & Moreda (2002).  
 Table 1 presents statistical analyses of these simulations. Shown are two statistics 
for selected flood events (20–25 flood events for each basin were included in the 
analyses): percent of mean absolute error of flood runoff, ∗vol, and flood peak, ∗peak. 
Also presented are two overall statistics describing the entire simulation period: 
percent of root mean square error, ∗RMS, and a correlation coefficient of hourly 
discharges, R. A few observations can be made about the results in Table 1.  
 While distributed and lumped simulations can both produce reasonable flood event 
simulations for calibrated watersheds, distributed model results are slightly better 
(compare columns 2–3 vs 6–7; note that better statistics are in bold italic). The 
distributed model benefit can also be seen in Fig. 1, which is a plot of flood peak errors 
for all selected floods from distributed and lumped runs over three basins. However, 
only the Blue River simulations show improvements over lumped simulations for the 
overall statistics of continuous runs (compare columns 4–5 vs 8–9). Other watersheds 
yield overall results comparable to lumped simulations with a slight decrease in 
accuracy.  
 It is important to note that simulations for two nested basins, Savoy and Kansas 
(not calibrated directly, but parameters from the calibration of the parent basin are 
applied instead), outperformed lumped simulations even more consistently than we 
would expect from a distributed model.  
 Consistent improvements from the uncalibrated parameter version of HL-RMS 
over uncalibrated lumped simulations are achieved for most watersheds (compare 
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Fig. 1 Absolute flood peak errors (%) from distributed and lumped runs over three 
parent basins. 

 
 
columns 2–5 vs 6–9 of the Uncalibrated parameters section of Table 1). It means that 
spatial patterns of a priori parameters and rainfall interact reasonably well, and as a 
result, the parameter scaling procedure used in this analysis may be a reasonable 
component in a multi-step calibration. 
 Tests suggest that HL-RMS provides a flexible framework for rainfall–runoff 
analysis and practical applications of distributed models, and that it is computationally 
feasible to run the system over large regions. The approach adds more practicality to 
the process of model parameterization, and facilitates an easier transition from current 
lumped model-based operational systems to more powerful distributed systems. 
Schemes developed to estimate distributed routing parameters based on local grid cell 
and basin outlet integrated properties produce reasonable results for the range of 
spatial scales without any calibration. Progress has been made in quantitatively 
estimating spatially-variable rainfall–runoff parameters by combining soil properties 
and lumped calibration results, but a robust method to calibrate the distributed 
parameter model remains to be developed. 
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